

No.103 SEPARATION REPORT

細孔多分散型高性能 SEC セミミ	クロカラム
ISKgel SuperMultiporeHZ ンリース	について
——————————————————————————————————————	
	ペーシ
1. はじめに	1
2.TSKgel SuperMultiporeHZ シリーズの特長	1
3.TSKgel SuperMultiporeHZ シリーズ基本的性質	2
3-1. 細孔特性	2
3-2. 分離性能	3
3-3.理論段高さ(HETP)の流速依存性	5
3-4. 較正曲線の流速依存性	6
3-5. 試料注入量の影響	7
3-6. 試料濃度の影響	8
3-7. 測定温度の影響	11
3-8.クロマトグラムの歪み	12
	15

東ソー株式会社

1. はじめに

サイズ排除クロマトグラフィー(SEC)は、測定法と しての簡便さ(自動化、測定時間)、再現性の良さから相 対分子量測定法であるにも拘らず、化学、食品、バイオ、 医薬など幅広い分野で高分子の分子量分布測定法として 広く普及しています。

SECでは、標準試料により作成された較正曲線に基づ いて分子量が計算されるため、カラムグレードの選択方 法によっては近似較正曲線と実較正曲線との誤差が発生 する、あるいは異なる細孔径の充てん剤を複数用いる事 により高分子試料のクロマトグラムに歪みが認められる 場合がありました。

東ソーでは、このような問題を解決した単一粒子内に 幅広い細孔径を有した細孔多分散型カラム(TSKgel MultiporeHxL-M)^{1),2)}を既に商品化しています。

今回、TSKgel MultiporeHxL-Mの特性を維持した上で 新しい合成法により単分散微粒子充てん剤を開発し、省 溶媒対応型のセミミクロカラム(46 mmID×15 cm)に 充てんしたSECカラムを上市しました。さらにオリゴマ ーや低分子用試料を対象にした低分子用グレードの細孔 多分散型充てん剤も新たに開発し上市しました。

本稿では、これらの新規細孔多分散型有機溶媒系セミ ミクロSECカラム**TSKgel** SuperMultiporeHZシリーズ の基本特性と応用例についてご紹介します。

2. TSKgel SuperMultiporeHZシリーズの特長

従来より SEC 測定においては、充てん剤細孔径の異な

表-1 TSKgel SuperMultiporeHZシリーズの物性一覧表

る各種カラムを複数本接続して分子量分画範囲の適正化 を図る方法、あるいは細孔径の異なる充てん剤を最適な 比率でブレンドし細孔特性(分子量分画範囲および較正 曲線の直線性)を改良したいわゆるミックスベッドカラ ムを使用することが一般的でした。

しかし、このような方法では、分子量既知の標準試料 の測定データから得られた実際のデータ点と多次式で近 似された較正曲線に誤差が生じること、また細孔径(排 除限界分子量)の異なる充てん剤(あるいは充てんカラム) が混合(あるいは接続)されることにより較正曲線に変 曲点が存在することになり、試料によってはクロマトグ ラム上に歪みが観察されることがありました。即ち正確 性と測定精度に問題のあるケースがありました。

これらの問題を克服するカラムとして細孔多分散型カ ラムTSKgel MultiporeHxL-Mを上市し、ご好評をいただ いていました。

今回、新規な合成法で開発されたTSKgel Super-MultiporeHZシリーズは、現行品の特長を受け継いだ上 に単分散微粒子化充てん剤をセミミクロカラムに充てん しているため、従来のカラムと同等の分離が半分の測定 時間で達成され、溶媒消費量も1/6に低減されました。

また、オリゴマーや低分子試料に優れた分離能を有し た新規グレードの低分子用細孔多分散型カラム TSKgel SuperMultiporeHZ-Nもラインナップしました。

TSKgel SuperMultiporeHZシリーズの基本的性質 を表-1、2に、また表-3には特長をまとめました。

物性	TSKgel SuperMultiporeHZ-N	TSKgel SuperMultiporeHZ-M	
充てん剤基材	Poly (Styrene/	(divinylbenzene)	
粒子径	3 µ m (単分散粒子)	4 μm (単分散粒子)	
排除限界分子量(PS/THF)	120,000	2,000,000	
中心細孔径	8 nm	14 nm	
分子量分画範囲(PS/THF)	$50,000 \sim 500$	1,000,000 \sim 500	
カラム理論段数	20,000 段/15 cm	16,000 段/15 cm	
カラムサイズ(分析カラム)	4.6 mmI	$D \times 15 \text{ cm}$	
カラムサイズ(ガードカラム)	4.6 mmI	$D \times 2 cm$	

表-2 細孔多分散型 SEC カラムの性能一覧表

商品名	理論段数(TP/カラム) (保証値)	非対称係数	カラムサイズ (mmID×cm)	粒子径 (μm)
TSKgel SuperMultiporeHZ-N	20,000/15 cm	$0.7 \sim 1.4$	4.6 imes 15	3.0
TSKgel SuperMultiporeHZ-M	16,000/15 cm	$0.7 \sim 1.4$	4.6 imes 15	4.0
TSKgel MultiporeHxL-M	16,000/30 cm	$0.7 \sim 1.4$	7.8 imes 30	6.0

Conditions	
Eluent	: THF
Flow rate	: 0.35 mL/min (4.6 mmID × 15 cm)
	1.0 mL/min $(7.8 \text{ mmID} \times 30 \text{ cm})$
Detection	: UV 254 nm (UV-8020 microcell)
Femperatur	e: 25 ℃
Sample	: DCHP (0.5%)
nj.volume	: 1 μ L (4.6 mmID × 15 cm)
-	$20 \ \mu \ \text{L} \ (7.8 \text{ mmID} \times 30 \text{ cm})$

3. TSKgel SuperMultiporeHZシリーズの 基本的性質

3-1. 細孔特性

TSKgel SuperMultiporeHZシリーズでは、表-1およ び表-2に示すように低分子用と高分子用の2グレードを 揃えています。

図-1には、THF溶離液における標準ポリスチレンの較 正曲線を示してます。

低分子用グレードのTSKgel SuperMultiporeHZ-Nの測 定可能な分子量分画範囲は、50,000~500、高分子用グレー

図-1 TSKgel SuperMultiporeHZシリーズの較正曲線

カラム:TSKgel SuperMultiporeHZシリーズ $(46 \text{ mmID} \times 15 \text{ cm})$

溶離液: THF 流 速: 0.35 mL/min 温 度:室温

- 注入量:5µL
- 就料:標準ポリスチレン
- (TSKgel標準ポリスチレンF-550~A-500)、ベンゼ ン

ドのTSKgel SuperMultiporeHZ-Mについては、1,000,000 ~500であり、両グレードの較正曲線とも測定可能な分 子量分画範囲において優れた直線性を有しています。

図-2では、TSKgel SuperMultiporeHZ-Nとこれまでの オリゴマー測定用として一般的な細孔径の異なる複数カ ラム系(TSKgel SuperHZ4000+3000+2500+2000)の 較正曲線の比較をしました。

TSKgel SuperMultiporeHZ-Nは、現行カラム系に比較 して低分子領域の較正曲線の傾きが緩やかで分離に優れ ていることがわかります。

図-2 TSKgel SuperMultiporeHZとTSKgel SuperHZ カラムの較正曲線

溶離液:THF

- 流 速: 0.35 mL/min
- 温 度:室温
- 注入量:5μL 試料:標準ポリスチレン (TSKgel標準ポリスチレンF-288~A-500)、ベンゼ
 - ン

表-3 TSKgel SuperMultiporeHZシリーズの特長

特長	利点
 細孔多分散型充てん剤 (単一粒子内に幅広い細孔分布を有する) 	 ・較正曲線の直線性に優れる。 ・測定試料のクロマトグラムに歪みが観察されない。 →分子量測定データの正確性、再現性の向上
2)充てん剤(単分散粒子)の微粒子化	 ・短時間・高分離能測定が可能 →従来カラム(30 cm)と同等の分離能を1/2の測定時間で達成可能 ・高流速測定においても分離能が低下しない ・カラム性能の安定性の向上
3) セミミクロカラム	 ・溶媒消費量の低減 →従来カラム (30 cm) に比べ1/6の消費量
4) 低吸着性充てん剤の採用	・幅広い種類の試料に適用可能

3-2. 分離性能

低分子用グレードである TSKgel SuperMultiporeHZ-N は、粒子径3 μ mの充てん剤を用いており、低分子用 TSKgel HxLシリーズに比べ単位長さ当り2倍の理論段 数を有しています。図-3に両タイプで測定したオリゴマ - (PTMEG 650)のクロマトグラムを示します。 TSKgel SuperMultiporeHZ-NがHxLシリーズと同等の分 離性能を半分の測定時間で達成していることがわかりま す。

図-4にPTMEG 650をそれぞれSuperHZシリーズ (TSKgel SuperHZ4000 + 3000 + 2500 + 2000および TSKgel SuperHZM-N)とTSKgel SuperMultiporeHZ-N を用いて測定したクロマトグラムを示します。現行 SuperHZシリーズ (クロマトグラムBとC)に比べ TSKgel SuperMultiporeHZ-N (クロマトグラムA)の分 離能が高いこと分かります。

高分子用グレードである TSKgel SuperMultiporeHZ-M は、粒子径4 μ mの充てん剤を用いており、TSKgel MultiporeHxL-Mに比べ、単位長さ当り2倍の理論段数を 有しております。図-5に、両タイプで測定した各種標準 ポリスチレンの溶出曲線の重ね書きを示します。TSKgel SuperMultiporeHZ-MがMultiporeHxL-Mと同等の分離を 半分の測定時間で達成していることがわかります。

図-6に、標準ポリスチレンオリゴマー(TSKgel標準ポリ スチレン A-500: Mw約500)をそれぞれTSKgel SuperMultiporeHZ-NとTSKgel SuperMultiporeHZ-Mで 測定したクロマトグラムを示します。

較正曲線の傾きが緩やかで粒子径が小さな TSKgel SuperMultiporeHZ-Nの方が高分離能であるとが明らかで す。

- 図-3 TSKgel SuperMultiporeHZ-NとHxLカラムによる PTMEGの分離
- カラム:(A) TSKgel G4000 + 3000 + 2500 + 2000HxL (7.8 mmID × 30 cm × 4本)
 - (B) TSKgel SuperMultiporeHZ-N

```
(4.6 \text{ mmID} \times 15 \text{ cm} \times 4 \text{ } \texttt{)}
```

- 溶離液:THF
- 流 速:(A) 1.0 mL/min
 - (B) 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: (A) 50 µ L
- (B) 10 μ L
- 試 料:ポリテトラメチレンエーテルグリコール (PTMEG 650)

図-4 TSKgel SuperMultiporeHZ-NとSuperHZによる PTMEGの分離

カラム: (A) TSKgel SuperMultiporeHZ-N (4.6 mmID × 15 cm × 4本) (B) TSKgel SuperHZ4000 + 3000 + 2500 + 2000 (4.6 mmID × 15 cm × 4本) (C) TSKgel SuperHZM-N (4.6 mmID × 15 cm × 4本) 溶離液: THF 流 速: 0.35 mL/min 検 出: RI 温 度: 40 °C 注入量: 10 μ L

試 料:ポリテトラメチレンエーテルグリコール (PTMEG 650)

図-5 TSKgel SuperMultiporeHZ-MとMultiporeHxL-M の標準ポリスチレンの溶出曲線

- カラム:(A) TSKgel MultiporeHxL-M (7.8 mmID×30 cm×2本) (B) TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×2本)
- 溶離液:THF
- 流 速:(A) 1.0 mL/min
- (B) 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: (A) 50 µ L
 - (B) 10 μ L
- 試 料:標準ポリスチレン
 - (TSKgel標準ポリスチレ F-288~A-500)

- 図-6 TSKgel SuperMultiporeHZ-NとSuperMultiporeHZ-M による標準ポリスチレンオリゴマーの分離
- カラム:(A) TSKgel SuperMultiporeHZ-M
 - $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{ } \text{})$
 - (B) TSKgel SuperMultiporeHZ-N
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:UV 254 nm
- 温 度:室温
- 注入量:5μL
- 試料:標準ポリスチレンオリゴマー (TSKgel標準ポリスチレン A-500)

3-3. 理論段高さ(HETP)の流速依存性

試料に低分子単分散試料(フタル酸ジシクロヘキシ ル:DCHP)を用いて、TSKgel MultiporeHxL-M(粒子 径:6 μ m)とTSKgel SuperMultiporeHZ-NおよびM (粒子径:3 μ mおよび4 μ m)におけるHETPの測定流 速依存性を確認した結果を**図-7**に示しました。

粒子径の大きいTSKgel MultiporeHxL-Mにおける最適 線流速(最小HETP)は、およそ0.035 cm/sec(7.8 mmIDカラムで約1.0 mL/min)でありこれ以上高い線流 速ではHETPが徐々に大きくなりカラム効率が低下する ことが分かります。一方、微粒子化されたTSKgel SuperMultiporeHZシリーズでは、MultiporeHxL-Mより も高い領域(0.035~0.04 cm/sec:約0.35~0.4 mL/min) に最適線流速があり、また高流速下条件でもカラム効率 が低下し難く高流速での高速分析も可能であることを示 しています。

図-8に高分子試料(TSKgel標準ポリスチレンF-40: Mw = 355,000、F-2: Mw = 18,100)に対するTSKgel SuperMultiporeHZ-MのHETPと測定線流速の関係を示 します。低分子試料(C)では、 $0.035 \sim 0.04$ cm/secで HETPが最も小さく(カラム効率が最も高く)なるのに 対し、高分子試料(A、B)では線流速が低下するにした がってHETPが除々に小さくなり、カラム効率が高くな ることがわかります。この傾向は分子量が高くなるにし たがって強くなります。したがって、平均分子量が1万 以下の試料においては高流速測定が充分可能ですが5万 以上の高分子試料では低流速測定が望ましいと言えます。

試 料:フタル酸ジシクロヘキシル (DCHP)

図-8 TSKgel SuperMultiporeHZ-Mにおける線流速と HETPの関係

 $(4.6 \text{ mmID} \times 15 \text{ cm})$

カラム: TSKgel SuperMultiporeHZ-M

- 溶離液:THF
- 流 速: 0.10~0.40 mL/min
- 検 出: UV 254 nm
- 温 度:室温
- 注入量:(A) & (B) 5 µ L

(C)
$$1 \mu I$$

- 試 料:(A) 標準ポリスチレン (Mw:355,000) (B) 標準ポリスチレン (Mw:18,100)
 - (C) DCHP

3-4. 較正曲線の流速依存性

TSKgel SuperMultiporeHZシリーズについて、測定 流速を変化させた時の較正曲線への影響を調べました (**図-9、図-10**)。

測定流速を0.1 mL/minから0.35 mL/minの範囲で変化 させて得られた標準ポリスチレンの較正曲線データより、 両グレードの細孔特性の測定流速依存性がほとんどない ことが確認されました。 この結果から、測定した標準ポリスチレンの分子量範 囲(TSKgel SuperMultiporeHZ-NはMw108万以下、 TSKgel SuperMultiporeHZ-MはMw289万以下)におい て、測定流速が $0.1 \sim 0.35$ mL/minの範囲内で、オーバー ロード効果や分子鎖切断現象などによる試料の流体力学 的容積の変化が少なく適正クロマトグラムが得られるこ とがわかります。

図-9 TSKgel SuperMultiporeHZ-Nの較正曲線の 流速依存性

カラム: TSKgel SuperMultiporeHZ-N

 $(4.6 \text{ mmID} \times 15 \text{ cm})$

- 溶離液:THF
- 流 速: 0.10~0.35 mL/min
- 温 度:室温
- 注入量:5μL
- 試 料:標準ポリスチレン
- (TSKgel標準ポリスチレンF-128~A-500)、ベン ゼン

図-10 TSKgel SuperMultiporeHZ-Mの較正曲線の 流速依存性

カラム:TSKgel SuperMultiporeHZ-M

 $(4.6 \text{ mmID} \times 15 \text{ cm})$

- 溶離液:THF
- 流 速: 0.10~0.35 mL/min
- 温 度:室温
- 注入量:5µL
- 試 料:標準ポリスチレン
 - (TSKgel標準ポリスチレンF-288~A-500)、ベン ゼン

3-5. 試料注入量の影響

試料注入量は、分離性能や分子量分布データに大きく 影響することは良く知られています。一般的には、カラ ムサイズが小さく充てん剤の粒子径が小さくなるほど最 大試料注入量は小さくなります。

図-11に、TSKgel SuperMultiporeHZシリーズにお ける低分子単分散試料 (DCHP)のHETPの注入量依存 性を示します。

微粒子が充てんされている TSKgel SuperMultipore-HZシリーズでは、一本当り最大試料注入量は、5 μ Lで あり TSKgel MultiporeHxL-Mは、50 μ Lであることがわ かります。

図-12と**13**のTSKgel SuperMultiporeHZ-Nによる標準 ポリスチレンオリゴマー (TSKgel標準ポリスチレンA-500) の分離性能の注入量依存性を観察した結果からも5 µ L が最大試料注入量であることが示されています。

- 図-12 TSKgel SuperMultiporeHZ-Nによる標準ポリスチ レンオリゴマーのクロマトグラムの注入量依存性
- カラム:TSKgel SuperMultiporeHZ-N (46 mmID×15 cm×2本)
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量:2, 5, 10, 15, 30, 50 μ L
- 試料:標準ポリスチレンオリゴマー
 - (TSKgel標準ポリスチレンA-500)、3 g/L

- 図-11 TSKgel SuperMultiporeHZシリーズ及び TSKgel MaltiporeHxL-Mにおける試料注入量と HETPの関係
- カラム:(A) TSKgel MultiporeHxL-M
 - $(7.8 \text{ mmID} \times 30 \text{ cm} \times 2 \text{ })$
 - (B) TSKgel SuperMultiporeHZ-M
 - $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{ })$
 - (C) TSKgel SuperMultiporeHZ-N
 - $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{\AA})$
- 溶離液:THF
- 流 速:(A) 1.0 mL/min
 - (B) & (C) 0.35 mL/min
- 検 出: UV 254 nm
- 温 度:室温
- 注入量:1~200 µ L
- 試料:フタル酸ジシクロヘキシル (DCHP)、5g/L

- 図-13 TSKgel SuperMultiporeHZ-Nによる標準ポリスチ レンオリゴマー(2量体と3量体)の分離能の注 入量依存性
- カラム:TSKgel SuperMultiporeHZ-N

 $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{ })$

- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量:1,2,5,10,15,20,30,50 µ L
- 試 料:TSKgel標準ポリスチレン (A-500), 3 g/L

3-6. 試料濃度の影響

試料注入量の違いや変動は確実に試料の溶出時間(溶 出容量)に影響し、分子量データおよび分離性能の変動 や低下につながります。さらに、最大試料注入量を超え た条件下ではこの影響が顕著に現れてきます。また、最 大試料注入量を超えていなくとも測定条件(測定流速、 温度、分子量および分布)、充てん剤特性あるいは充てん カラムにより、悪影響を及ぼすことは前述したとおりで す。

試料濃度が高くなると、試料注入量やその他が最適化 された一定条件であっても流体力学的容積が小さくなり 溶出時間(溶出容量)が遅くなってきます。

この現象は濃度効果と呼ばれ、一般に充てん剤の粒子 径が小さいほど、試料の分子量が高いほど強くなる傾向 にあります。

図-16と図-17には、低分子用グレードのTSKgel SuperMultiporeHZ-Nによる低分子標準ポリスチレンの分 離クロマトグラムと2量体 (n=2) と3量体 (n=3) の 分離能の試料濃度依存性データを示します。この結果で

は、試料濃度が10g/L以下であれば充分な分離性能が安 定して得られることが示されています。

図-18、19にTSKgel SuperMultiporeHZ-Nを用いて濃 度の異なるフェノール樹脂(Mw約5,000)を測定したク ロマトグラムと分子量を、図-20、21に同一条件で測定 したエポキシ樹脂 (Mw約8,000) のクロマトグラムと分 子量を示します。両試料とも比較的分子量が低いために、 試料濃度20 g/Lまでの範囲であれば平均分子量に変化が 認められないことが分かりました。

TSKgel SuperMultiporeHZ-Mによるエポキシ樹脂、ポ リスチレン (SRM706) のクロマトグラムと分子量の試 料濃度依存性データを図-22~25に示します。

平均分子量(Mw)が約2万のエポキシ樹脂では、試 料濃度依存性は小さく4g/L以下であれば測定に問題あり ませんが、平均分子量(Mw)が約26万のポリスチレン においては、試料濃度が2g/Lより高くなると溶出位置 の遅れと分子量値の低下が観られてきます。このように 試料の分子量によっても適正な試料濃度が異なり、試料 濃度の最適化は重要なポイントになります。

図-16 TSKgel SuperMultiporeHZ-Nによる標準ポリスチ レンオリゴマーのクロマトグラムの濃度依存性 カラム: TSKgel SuperMultiporeHZ-N $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{\AA})$ 溶離液:THF 流 速: 0.35 mL/min 検 出:RI 温 度:40℃ 注入量: 15 µ L 濃度:1.2,5,10,20 g/L 試 料:標準ポリスチレンオリゴマー

- カラム: TSKgel SuperMultiporeHZ-N $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{ })$
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 µ L
- 濃度: 0.6, 1.2, 2.5, 5, 10, 20 g/L
- 試 料:標準ポリスチレンオリゴマー
 - (TSKgel標準ポリスチレンA-500)

図-18 TSKgel SuperMultiporeHZ-Nによるフェノール樹 脂のクロマトグラムの濃度依存性

- カラム: TSKgel SuperMultiporeHZ-N (46 mmID×15 cm×2本) 溶離液: THF 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 µ L
- 濃度: 0.6, 1.2, 2.5, 5, 10, 20 g/L
- 試 料:フェノール樹脂 (Mw:約5,000)

図-19 TSKgel SuperMultiporeHZ-Nによるフェノール樹 脂の分子量の濃度依存性

- カラム: TSKgel SuperMultiporeHZ-N
 - $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{ })$
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 μ L
- 濃度:1.2, 2.5, 5, 10, 20 g/L
- 試 料:フェノール樹脂 (Mw:約5,000)

図-20 TSKgel SuperMultiporeHZ-Nによるエポキシ樹脂 のクロマトグラムの濃度依存性

カラム:TSKgel SuperMultiporeHZ-N $(4.6 \ {\rm mmID} \times 15 \ {\rm cm} \times 2 \mbox{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 μ L
- 濃度: 0.6, 1.2, 2.5, 5, 10, 20 g/L
- 試 料:エポキシ樹脂 (Mw:約8,000)

図-21 TSKgel SuperMultiporeHZ-Nによるエポキシ樹脂 の分子量の濃度依存性

- カラム:TSKgel SuperMultiporeHZ-N (4.6 mmID×15 cm×2本) 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 μ L
- 濃度: 0.6, 1.2, 2.5, 5, 10, 20 g/L
- 試 料:エポキシ樹脂 (Mw:約8,000)

図-22 TSKgel SuperMultiporeHZ-Mによるエポキシ樹脂 のクロマトグラムの濃度依存性 カラム: TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×2本)

溶離液:THF

検 出:RI

温 度:40℃

注入量: 15 μ L

流 速: 0.35 mL/min

濃度: 0.5, 1, 1.5, 3, 5 g/L

試 料:エポキシ樹脂 (Mw:約20,000)

- 図-23 TSKgel SuperMultiporeHZ-Mによるエポキシ樹脂 の分子量の濃度依存性
- カラム:TSKgel SuperMultiporeHZ-M

 $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{\AA})$

- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 μ L
- 濃度: 0.5, 1, 2, 4 g/L
- 試 料:エポキシ樹脂 (Mw:約20,000)

 図-24 TSKgel SuperMultiporeHZ-Mによる ポリスチレンのクロマトグラムの濃度依存性
 カラム: TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×2本)
 溶離液: THF
 流速: 0.35 mL/min
 検出: RI
 温度: 40℃
 注入量: 15 µ L
 濃度: 0.5, 1, 1.5, 3, 5 g/L
 試料: 標準ポリスチレン

(NIST SRM 706 : Mw = 258,000)

- カラム:TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×2本) 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 15 µ L
- 濃度: 0.5, 1, 1.5, 3, 5 g/L
- 試 料:標準ポリスチレン
 - (NIST SRM 706 : $M_W = 258,000$)

3-7. 測定温度の影響

図-26と図-27にTSKgel SuperMultiporeHZシリーズ の標準ポリスチレンの較正曲線の温度依存性データを示 します。両グレードとも測定温度が高くなるほど各標準 ポリスチレンの溶出が早くなります。

図-28にTSKgel SuperMultiporeHZ-Nにおける各種標 準ポリスチレンの理論段数と測定温度の関係を示しまし た。温度が高くなると試料の広がりは小さくなることが 知られていますが、高分子試料ほどその傾向が強くなる ことがわかります。

温度を高めて測定することは、試料の溶出が早くなる こと、試料の広がりが小さくなること、試料の最適流速 が高められることなどより高分離能・高速分析が期待さ れます。

図-26 TSKgel SuperMultiporeHZ-Nの 較正曲線の温度依存性

カラム: TSKgel SuperMultiporeHZ-N

 $(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text{\AA})$

溶離液:THF

- 流 速: 0.35 mL/min
- 温 度:25,40,50,60℃

注入量:5μL

- 試 料:標準ポリスチレン
 - (TSKgel標準ポリスチレ F-128~A-500)

図-27 TSKgel SuperMultiporeHZ-Mの較正曲線の 温度依存性

カラム: TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×2本) 溶離液: THF 流 速: 0.35 mL/min 温 度: 25, 40, 50, 60℃ 注入量: 5 µ L 試 料:標準ポリスチレン (TSKgel標準ポリスチレン F-550 ~ A-500)

図-28 TSKgel SuperMultiporeHZ-N における 標準ポリスチレンの理論段数の温度依存性

- カラム:TSKgel SuperMultiporeHZ-N
- (4.6 mmID×15 cm×2本) 溶離液:THF
- 流 速: 0.35 mL/min
- 温度:25,40,50,60℃
- 注入量:5μL
- 試 料:標準ポリスチレン
 - (TSKgel標準ポリスチレン F-40, F-10, F-2, A-5000)

3-8. クロマトグラムの歪み

一般にSECは細孔径の異なる異種グレードカラムを複 数本接続し、或いは細孔径の異なるグレードを混合した ミックスベッド型のカラムで測定されます。この場合試 料によってはクロマトグラム上に歪みが観られることが あります。一方、細孔多分散型カラム(TSK-GEL SuperMultiporeHZシリーズ、TSKgel MultiporeHxL-M) を用いた場合は、その最大の特長である細孔特性(細孔 構造)によりクロマトグラムに歪みが認められません。

図-29にTSKgel SuperMultiporeHZ-NとTSKgel SuperHZ (3000+2500+2000)によるフェノール樹脂の クロマトグラムを示します。TSKgel SuperHZシリー ズでは、クロマトグラム上に歪みが観られますが、 TSKgel SuperMultiporeHZ-Nではこの現象が観察されま せん。

図-30 と 31 に TSKgel SuperMultiporeHZ-N と TSKgel SuperHZ (3000 + 2000) による各種フェノール樹脂のク ロマトグラムを示します。SuperHZ (3000 + 2000) を用 いた場合 (図 31) は、分子量の異なる各種試料のクロマ トグラムの歪みが特定の溶出時間に観察されます。一方、 TSKgel SuperMultiporeHZ-Nの場合はどの試料もクロマ トグラムに歪みが観察されません。

表4にシリコン樹脂をそれぞれTSKgel Super-MultiporeHZ-Nと市販カラム(4000と2000グレードの接 続)の充てん剤のロット(市販カラムは2000グレード) が異なるカラムを用いて測定し得られた分子量、多分散 度を示します。細孔多分散型カラムは、市販カラムに比 ベ分子量の充てん剤ロット間差が小さいことが分かりま す。さらに図-32にTSKgel SuperMultiporeHZ-Nのクロ マトグラムを示します。クロマトグラムに顕著な違いは 見られずロット間差が小さいことがわかります。

図-34 と 35 に TSKgel SuperMultiporeHZ-M と TSKgel G (4000 + 3000 + 2500 + 2000) HxL および TSKgel SuperHZ (4000 + 3000 + 2500 + 2000) によるフェノー ル樹脂のクロマトグラムを示します。従来品においては、 クロマトグラムに歪みが観察されますが、 TSKgel SuperMultiporeHZ-Mではこの現象が観察されません。

図-36に、試料にアクリル樹脂を用いて両グレードに よる分離クロマトグラムを示します。フェノール樹脂同 様に、アクリル樹脂においても従来品ではクロマトグラ ムに歪みが観察されますが、TSKgel SuperMultiporeHZ-Mではこの現象が観察されません。

図-37に、細孔径の異なる充てん剤の混合比率を最適 化したミックスベッドカラムであるTSKgel SuperHZM-Mと細孔多分散型カラムTSKgel SuperMultiporeHZ-Mに よるフェノール樹脂のクロマトグラムを示します。この 様に、充てん剤の混合比率の最適化により細孔特性を改 良したミックスベッドカラムにおいても、クロマトグラ ムに歪みが観察されます。

図-38に、TSKgel SuperHZM-Mと同タイプの他社ミ ックスベッドカラムとTSKgel SuperMultiporeHZ-Mによ るフェノール樹脂のクロマトグラムを示します。

図-37と同様にミックスベッドカラムの場合はクロマ トグラムに歪みが観察されました。

表-4 各種ロットのTSKgel SuperMultiporeHZ-NとSuperHZによるシリコン樹脂の平均分子量

Column (Col Lot)	平 均 分 子 量			多分散度		
Column (Ger Lot)	Mw	Mn	Mz	Mz/Mw	Mw/Mn	
TSKgel SuperMultiporeHZ-N (A)	3,410	1,340	7,750	2.27	2.54	
TSKgel SuperMultiporeHZ-N (B)	3,400	1,340	7,740	2.28	2.54	
TSKgel SuperMultiporeHZ-N (C)	3,430	1,350	7,850	2.29	2.54	
Ave. (RSD)	3,410 (0.37%)	1,340 (0.35%)	7,780 (0.64%)	2.28 (0.36%)	2.54~(0.00%)	
市販カラム(4000+2000グレード)(A)	3,430	1,330	7,640	2.23	2.58	
市販カラム(4000+2000グレード)(B)	3,480	1,310	7,990	2.30	2.66	
市販カラム(4000+2000グレード)(C)	3,370	1,270	7,850	2.33	2.65	
市販カラム(4000+2000グレード)(D)	3,540	1,320	7,710	2.18	2.68	
Ave. (RSD)	3,455 (1.81%)	1,310 (1.74%)	7,800 (1.72%)	2.26~(2.60%)	2.64~(1.43%)	
溶離液:THF		検 出:RI (H	[LC-8220GPC)			
流 速: 0.35 mL/min		試 料:シリコ	・ン樹脂 (3 g/L)	10 μ L		
温 度:40℃						

図-29 TSKgel SuperMultiporeHZ-NとSuperHZカラム によるフェノール樹脂の分離

- カラム: (A) TSKgel SuperMultiporeHZ-N
 - $(4.6 \text{ mmID} \times 15 \text{ cm} \times 3 \text{ })$
 - (B) TSKgel SuperHZ3000 + 2500 + 2000 (4.6 mmID×15 cm×3本)
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 10 µ L
- 試 料:フェノール樹脂 (3g/L)

図-30 TSKgel SuperMultiporeHZ-N による 各種フェノール樹脂の分離

- カラム: TSKgel SuperMultiporeHZ-N
- 溶離液:THF
- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 10 μ L
- 試 料:フェノール樹脂 (3g/L)

図-31 TSKgel SuperHZカラムによる各種フェノール樹 脂の分離

カラム	4	:	TSKgel SuperHZ3000 + 2000
			$(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \text$
溶離液	夜	:	THF
流道	束	:	0.35 mL/min
検	H	:	RI
温月	吏	:	40 ℃
注入量	<u></u> 王	:	10 μ L
試 米	와	:	フェノール樹脂(3 g/L)

図-3	2	1 1	各種ロットTSKgel SuperMultiporeHZ-N こよるシリコン系樹脂の分離
カラ	4	:	TSKgel SuperMultiporeHZ-N
			$(4.6 \text{ mmID} \times 15 \text{ cm} \times 2 \pm)$
溶離	液	:	THF
流	速	:	0.35 mL/min
検	出	:	RI
温	度	:	40 °C
注入	量	:	10 μ L
試	料	:	シリコン系樹脂

図-34 TSKgel SuperMultiporeHZ-MとHxLカラム シリーズによるフェノール樹脂の分離 カラム: (A) TSKgel SuperMultiporeHZ-M (46 mmID×15 cm×4本)) (B) TSKgel G4000 + 3000 + 2500 + 2000HxL (7.8 mmID×30 cm×4本)) 溶離液: THF 流速: (A) 0.35 mL/min (B) 1.0 mL/min 温度: 40 °C 検出: RI 試料: フェノール樹脂 (3 g/L) 注入量: (A) 10 μ L

(B) 50 μ L

図-35 TSKgel SuperMultiporeHZ-MとSuperHZカラム によるフェノール樹脂の分離

- カラム:(A) TSKgel SuperMultiporeHZ-M

 - (B) TSKgel SuperHZ4000 + 3000 + 2500 +
 - 2000 (4.6 mmID \times 15 cm \times 4 $\stackrel{}{\Rightarrow}$)

溶離液:THF

- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 10 μ L
- 試 料:フェノール樹脂 (3g/L)

図-36 TSKgel SuperMultiporeHZ-MとSuperHZカラム によるアクリル樹脂の分離

カラム: (A) TSKgel SuperMultiporeHZ-M (4.6 mmID×15 cm×4本) (B) TSKgel SuperHZ4000+3000+2500+ 2000 (4.6 mmID×15 cm×4本) 溶離液: THF 流 速: 0.35 mL/min 検 出: RI

- 検 出.RI 温 度:40℃
- 注入量:10μL

試 料:アクリル樹脂 (3g/L)

図-37 TSKgel SuperMultiporeHZ-MとSuperHZM-M によるフェノール樹脂の分離 カラム: (A) TSKgel SuperMultiporeHZ-M

(46 mmID × 15 cm × 4本) (B) TSKgel SuperHZM-M (46 mmID × 15 cm × 4本) 溶離液:THF

- 流 速: 0.35 mL/min
- 検 出:RI
- 温 度:40℃
- 注入量: 10 μ L

試 料:フェノール樹脂 (3g/L)

図-38 TSKgel SuperMultiporeHZ-Mと他社ミックス タイプカラムによるフェノール樹脂の分離 カラム: (A) TSKgel SuperMultiporeHZ-M (4.6 mmID×25 cm) (B) 他社ミックスベッドカラム (4.6 mmID×25 cm) 溶離液: THF 流 速: 0.35 mL/min 検 出: RI 温 度: 40℃ 注入量: 10 µ L

試 料:フェノール樹脂 (3g/L)

4. おわりに

TSKgel SuperMultiporeHZシリーズは、細孔多分散 型充てん剤を充てんした有機溶媒系高性能SECセミミク ロカラムであり、従来のミックスベッドカラムなどに比 較して、理想的なクロマトグラムが得られ、その結果と して測定再現性が高く正確な分子量分布データが得られ ることがお分かり頂けたと思います。

また、本充てん剤は、新規な合成法により微粒子化と 単分散粒子化を達成し、これまでの分離能を維持した上 で高速分析を実現しました。

さらに、本充てんカラムは、省溶媒に対応したカラム サイズを採用しており、SEC測定においては送液再現性 に優れた高速SECシステム専用機であるHLC-8220GPC との組合せでの測定を推奨致します。

(参考文献)

- M.Nagata, T.Kato, H.Furutani, J.Liq. Chrom & Rel. Technol., 21 (10) 1471-1484 (1998)
- 2) 東ソー研究報告 第41巻 (1997)

細孔多分散型GPC用充てんカラム TSKgel MultiporeHシリーズの開発

東ソー株式会社 バイオサイエンス事業部

東京本社営業部	☎(03)5427-5180 ☎(06)6344-3857	〒105-8623 〒530-0004	東京都港区芝 3-8-2 大阪市北区営島浜 1-2-6	
名古屋支店 バイサイエンスの	$\mathbf{x}(052)211-5730$	± 460-0003	久阪市北区主岛浜 1-2-0 名古屋市山区線 1-17-13	
福岡支店	☎ (092)781-0481	〒810-0001	福岡市中央区天神1-13-2	
仙台支店	☎ (022)266-2341	〒980-0014	仙台市青葉区本町 1-11-1	
山口営業所	☎ (0834)63-9888	746-8501	山口県周南市開成町 4560	
バイオサイエンス事業部ホームページ	http://www.to	osoh.co.jp/	science/	
東ソー HLC データベース	http://www.to	osoh.co.jp/	hplc/hlcdb_inx.htm	
お問い合わせ E-mail	tskgel@toso	tskgel@tosoh.co.jp		

5607SB- 品番 994002 A